Fast Whole-Engine Stirling Analysis

Rodger W. Dyson, Scott D. Wilson

Roy C. Tew, and Rikako Demko

Thermal Energy Conversion Branch

August 16, 2005

Dual Opposed Stirling Convertors

High Efficiency, Low Mass Space Power

Simulate Engine Only

Operating Conditions

Hot-End Temperature, K 923

Cold-End Temperature, K 353

Ambient Temperature, K 293

Frequency, Hz 80

Mean Pressure, Pa 2.429E+6

Power Piston Amplitude, mm 6.0e-3

Whole-Engine Simulation

Comparison with Sage 1D Results

	Axisymmetric	Sage 1D	Sage 1D	
	Simulation	Ambient	No Ambient	
PV Power, W	79.65	68.77	70.14	
Heat In, W	247.315	260.94	193.8	
Heat Out, W	168.313	191.9	123.7	
PV Efficiency	.322	.264	.362	
Pressure Ratio	1.209	1.187	1.187	
Regen. ∆P., Pa	10466.3	15888	15790	
Heater P, Pa	682	194	192	
Cooler P, Pa	896	316	315	
Pressure Amp., Pa	225269	203100	203200	
Mean Pressure, Pa	2429130	2378000	2378000	

Comparison with Experiment

	Thot C	Tcold C	Freq. Hz	Qin W	PV W	Qout W
TDC #13	646.0	80- 92.4	81.4	242.1	78.2	163.9
TDC #14	646.5	80- 94.4	81.4	250.4	79.6	170.8
Simulation	650.0	80	80	247.3	79.7	168.3
%Err-AVE	100.6	?	98.2	100.4	100.9	100.6

Pressure and Heat Transfer over Cycle

Expansion and Compression Pressure

Regenerator Pressure Drop

Solved Whole-Engine On 32 Processor Cluster

Multidimensional Analysis Tools

- Modified CAST, CFD-ACE, Fluent, STAR-HPC, CFX/ANSYS, others ...
- All low order SIMPLE/PISO based
- New high-order codes being developed

Multidimensionally Enabled Capabilities

- Structural, thermal, fluid, electromagnetics, and coupled physics.
- 1 hour per cycle axisymmetric simulation
- Seal & appendix gap phenomena
- HX end effects
- Effect of vortices in expansion & compression
- Flexure temperatures for reliability analysis
- Effects of slight geometrical variations

14

Cool End Heating

3.75e+02 3.74e+02 3.73e+02 3.71e+02 3.70e+02 3.69e+02 3.68e+02 3.67e+02 3.66e+02 3.64e+02 3.63e+02 3.62e+02 3.61e+02 3.60e+02 3.58e+02 3.57e+02 3.56e+02 3.55e+02 3.54e+02 3.53e+02 3.51e+02 3.50e+02 3.49e+02 3.48e+02 3.47e+02 3.45e+02 3.44e+02 3.43e+02 3.42e+02 3.41e+02

Radial Heat Transfer Effects

Radial Heat Transfer Effects

Displacer Seal Close-up

Appendix Gap Shuttle Losses

Effects of Vortices in Expansion

Simulation Approach

- Whole-engine for physical consistency
- REV Regenerator Modeling
- Grid Layering, Smoothness, and Quality
- Conjugate heat transfer method adjustment
- High-speed Low Cost Parallel Cluster
- Lot's of debugging....

Dangers of Component Modeling: Axially Oscillating Boundaries

23

Radially Oscillating Boundaries

9.00e-01

1.00e+00

8.00e-01

7.00e-01

6.00e-01

5.00e-01

4.00e-01

3.00e-01

2.00e-01

1.00e-01

0.00e+00

-1.00e-01

-2.00e-01

-3.00e-01

-4.00e-01

-4.00e-0

-5.00e-01

-6.00e-01

-7.00e-01

-8.00e-01

-9.00e-01

Heat Exchanger Oscillating Boundary

Manifold & Appendix Gap O.B.

Cooler Manifold O.B.

Seal Region O.B.

Compression Manifold O.B.

Regenerator Modeling

- Geometrical Shapes Affect Complexity
- High Efficiency Regenerators Permit Thermal-Equilibrium Assumption/Usage
- Add source terms to governing equations
- Darcy-Forcheimer equation is used on momentum, Coefficients from experiment
- Single Energy equation (fluid/solid averaged) with averaged conductivity and energy

Regenerator Modeling in More Detail Later

Regenerator Geometry

Gridding Approach

- Scale geometry to compensate for 32-bit
- Avoid tetrahedrals, use unstructured quads
- Match cell sizes across sliding regions
- Smoothly expand/shrink cell sizes throughout
- Use layering, avoid adaption/remeshing
- Utilize moving and double-sided boundary layers
- Include as much geometry as practical
- Clean up geometry in CAD, avoid virtual geometry
- Over-converge the steady solution to improve grid

Whole Engine (700K cells)

Left Half Grid

Right Half Grid

Displacer Rod Seal Grid (Close-Up)

Inside Displacer and Wall Glenn Research Center at Lewis Field

Piston Region

Conjugate Heat Transfer Strategy

- Utilize coupled solver in double precision
- Maximize energy underrelaxation factor
- Double-sided boundary layers
- Turn off secondary temperature gradients
- Emphasize the coarse multigrid to avoid roundoff error
- Utilize explicit underrelaxation of temperature
- Maintain small time-steps (160/cycle)
- Go to higher space and time accuracy when possible

Higher Solution Speeds Achievable

- •Infiniband/High Capacity Switch
- •260 processors in a single 7 foot tower
- •Higher-Order Techniques
- Quad/Octa Opteron Processors
- •256 bit computing

Conclusions

- First U.S. fully converged axisymmetric simulation of actual Stirling engine
- Comparison with experiment shows less than 1% error on power and efficiency
- More testing required to confirm
- Extending to three-dimensions for full part testing and integration

Cool End Heating

Contours of Static Temperature (k) (Time=5.1547e+00)

Contours of Static Temperature (k) (Time=5.1547e+00)

Displacer Seal Leakage

Contours of Static Temperature (k) (Time=5.1547e+00)

Displacer Seal Close-up

Contours of Static Temperature (k) (Time=5.1547e+00)

Displacer Rod Seal Grid

Grid (Time=5.1547e+00)

